Connectivity in the potential energy landscape for binary Lennard-Jones systems.
نویسندگان
چکیده
Connectivity in the potential energy landscape of a binary Lennard-Jones system can be characterized at the level of cage-breaking. We calculate the number of cage-breaking routes from a given local minimum and determine the branching probabilities at different temperatures, along with correlation factors that represent the repeated reversals of cage-breaking events. The number of reversals increases at lower temperatures and for more fragile systems, while the number of accessible connections decreases. We therefore associate changes in connectivity with super-Arrhenius behavior. Reversals in minimum-to-minimum transitions are common, but often correspond to "non-cage-breaking" processes. We demonstrate that the average waiting time within a minimum shows simple exponential behavior with decreasing temperature. To describe the long-term behavior of the system, we consider reversals and connectivity in terms of the "cage-breaking" processes that are pertinent to diffusion [V. K. de Souza and D. J. Wales, J. Chem. Phys. 129, 164507 (2008)]. These cage-breaking events can be modeled by a correlated random walk. Thus, a full correlation factor can be calculated using short simulations that extend up to two cage-breaking events.
منابع مشابه
A conformal solution theory for the energy landscape and glass transition of mixtures
We apply conformal solution theory and extend to mixtures a recently derived equation of state for glass-forming liquids. The equation of state is based on the statistical properties of the multidimensional potential energy surface as a function of a macroscopic system’s degrees of freedom (energy landscape), and allows the calculation of an ideal glass transition locus, along which the configu...
متن کاملDiffusive Dynamicsof Binary Lennard-Jones Liquid in the Presence of Gold Nanoparticle: A Mode Coupling Theory Analysis
Molecular dynamics simulation has been performed to analyze the effect of the presence of gold nanoparticle on dynamics of Kob-Anderson binary Lennard-Jones (BLJ) mixture upon supercooling within the framework of the mode coupling theory of the dynamic glass transition. The presence of gold nanoparticle has a direct effect on the liquid structure and causes the peaks of the radial distribution ...
متن کاملLennard-Jones Energy Parameter for Pure Fluids from Scaled Particle Theory
By considering the fact that the surface tension of a real fluid arises from a combination of both repulsive and attractive forces between molecules, a new expression for the interfacial tension has been derived from scaled particle theory (SPT) based on the work of cavity formation and the interaction energy between molecules. At the critical temperature, the interfacial tension between c...
متن کاملConstrained Simulations to Count the Glasses That a Lennard Jones Fluid Samples
The glass transition is usually regarded as a kinetic phenomenon but it can be treated in a purely thermodynamic way when physical constraints, rather than lack of time, are applied to prevent a liquid from sampling its many glasses. Simulations of Lennard Jones fluids show that they can be made glassy at any density or temperature and that the glass transition is accompanied by a decrease in t...
متن کاملParticle rearrangements during transitions between local minima of the potential energy landscape of a binary Lennard-Jones liquid.
The potential energy landscape (PEL) of binary Lennard-Jones (BLJ) mixtures exhibits local minima, or inherent structures (IS), which are organized into metabasins (MBs). We study the particle rearrangements related to transitions between both successive IS and successive MB for a small 80:20 BLJ system near the mode-coupling temperature TMCT. The analysis includes the displacements of individu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 130 19 شماره
صفحات -
تاریخ انتشار 2009